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The two-dimensional contact problem (the case of plane stress) of the transfer of a shear force of given intensity to an elastic 

anisotropic wedge-shaped plate through an elastic rod of variable stiffness is considered. It is assumed that the rod is connected 

to one of the edges of the plate, the other edge is stress-free, and the bending stiffness of the rod is negligibly small. This problem 

is solved in closed form by reducing it to the Karleman boundary-value problem for a strip with a shift. Various cases of the 

variation of the stiffness of the supporting rod are studied. The nature of the contact shear stress at the vertex of the wedge is 

analysed. 0 2002 Elsevier Science Ltd. All rights reserved. 

Contact problems of the interaction between elastic bodies of various shapes (including wedge-shaped 
bodies) and thin elastic elements in the form of stringers or inclusions were considered in [l-3]. Problems 
for an elastic isotropic or anisotropic wedge, supported by a rod of constant stiffness [4-71, as well as 

the problem for an elastic isotropic wedge, supported along the bisector by an elastic rod of variable 
stiffness [8], have been studied by means of boundary-value problems of the theory of analytical functions. 

An elastic anisotropic thin wedge-shaped plate occupying an angle -0 < arg z c 0, 0 < 8 c 271 in a 
plane is considered. One side of the angle arg z = -0 is free and a rod of variable tensile stiffness is 
glued to the other side arg z = 0. We will determine the distribution of the contact forces along the 
fastening line as well as the elastic equilibrium of the plate under a tangential load of intensity 
Q(X) applied along the rod. We will assume that the bending stiffness of the rod is negligibly small, 
ie o”=O 

.‘Y . 
From the equilibrium condition for any part (0, x) of the rod we have 

So(x)&)-hj rz~JS)-TO(S)ld.s=O, x>o 
0 

The condition for complete contact between the elastic rod and the wedge has the form (the prime 
denotes differentiation with respect to x) 

L&(x) = u’(x, O), ZQX) = r,(x, 0) s t(x), x > 0 (2) 

By Hooke’s law, taking into consideration that oe = oV = 0, we have 

u;(x) = o;(xVE,(x), u’(x, 0) = a,&(& O)+a,,o,(x, 0) 
(3) 

Here E,(x) is the modulus of elasticity of the rod, alI and aI6 are the elasticity constants of the plate, 
I$?(x), T$(x) and c&y) z&,y) are the normal and shear stresses of the rod and the wedge, respectively, 
uo(x) atid U(X, y) are the horizontal displacements of the rod and elastic wedge, respectively; so(x) is the 
cross-section area of the rod and h is the plate thickness. 

Condition (1) can be written, taking Eqs (2) and (3) into account, in the following form 

k,(x)o,(X)+k*(X)~(X)-_hJ(x)=O, x>o (4) 

k,(X)=S&)&(x)a,,. k*(X) = s&)Ql(x)+j 

J(~) = j [z(s) - to(s)lds 
0 
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The equilibrium condition for the rod has the form 

J(m) = 0 (5) 

Consider two planes of the complex variables: z1 = x1 + iyi, z2 = x2 + iy2, which are obtained from 
the plane z = x + iy by the affine transformations x, = x + a,y and y, = p,,y, p,, > 0, respectively, 
where s, = a, + ifi, (n = 1, 2) are the roots of the characteristic equation, where s1 f s, [9]. 

The given domain S(43 < arg z c 0) in the plane of the complex variable z is mapped by means of 
these transformations into the domains S,(X), < arg z, < 0), respectively, in the plane z, (n = 1, 2) 
where 

tge, = p, sin B(cosCl- c1, sine)-‘, o<e, <27r 

The problem is thus reduced, by means of well-known relations [9] expressing the components of 
the stress vector in terms of two analytical functions, to solving the following boundary-value problem 
of the theory of functions of a complex-variable: it is required to find two functions (Pt(zi) and (D2(z2) 
that are analytical in the domains Si and S2, respectively, with the following boundary conditions 

(s, -S*)t@,(r,)+($ -S;!)t;W+(S* -S,)t,@,(tz)=O (6) 

t, =p(cos8-s,sinO), p=lrl*O 

(s, -G)@,U,)+(S, -S*YI+(t,)+(S2 -:2)@*(t2)=-r(X) 

t,=tz=x>o 
(7) 

2 Relk, (x)a@, (x)1 + [k*(X) - 2a,k, (x)lT(x) = W(x), x > 0 (8) 

a=(s, -s*)(s, -S2) 

We will assume that the stresses and rotations vanish at infinity and hence consider that for large 

lznl 
~n(Zn)=Yn/zn+O(l/z”), n=l,2 

We will also assume that the functions @i(z,) and Q2(z2) are continuously extended to all boundary 
points, except possibly the points z, = 0, at which they satisfy the following conditions 

limz,@,(z,) = 0 when z, + 0 

Thus we will search for the functions (Pie and (Dz(z2) in the form 

ir~nz 
ndr-+ z,, ES, 

Z” 

where 

At the point t = 0 the integrals are considered in the sense of the principal Cauchy value. It can be 
shown that a, = -i, 71124 (0) from which it follows that y,, = -2a, = i,2nA,(O). We can also conclude 
from Eqs (6) and (9) that a, and a2 satisfy the condition 

(s* - ?*)a, = ($2 - s, )a, + (s; - s; )Zi 

Substituting Eq. (9) into conditions (6) and (7), carrying out a Fourier transformation and solving 
the last system for&(t) (n = 1,2), we obtain 

A,(r) = &[(S; -~~)e-~ +(S2 -T,)e-” +(s2 -Fz)ewiw]rT(r) (11) 

A(r) =I s, - s2 I2 ch -yY- 1 s, -s, I* ch 6t + ‘t&p2 c0sj.U 
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T(f) = & 7 esr(es)e-i’sdf 

y=0, +0,, 6=8, -8,, p=lnIcosO-s,sin81-ln(cosO-s2sin81 

The function&(t) is obtained from the expression for A,(t) by interchanging s and s2 and O1 and Q2. 
It is obvious that T(-t) = T(t). Since the stress vanishes at infinity, taking the limit in the relation for 

T(t) we obtain 

7-(O) = r, /&G, r, = j z(t)& = j r,(t)& 
0 0 

It can be proved that the function A(t) does not vanish anywhere for real t, apart from the point 
t = 0, where it has a double zero root. The function in square brackets in the equation forA, behaves 
similarly. Consequently, if the function z(x) is absolutely integrable, the functions Al(t) and AZ(~) will 
be continuous along the whole axis. Thus from Eq. (11) it follows that 

A, (0) = 
(F, -s;>y-(Z, -F*)6-ip(s2 -s;> r, 

IS, -S2 (* y*--IS, -s; I* 6* -4p,f$i* -hi (12) 

Hence the constants al, a2, y1 and y2 are determined. 
By substituting the value of the function al(zl), determined by Eqs (9) and (ll), into the boundary 

condition (8), by the Vieta formulae for characteristic equations, we get 

- A,(r) -- &j L A(t) T(t)ei”““df - & J(x) = 2 Re au, (13) 

Al(f)=-& +~~)IsI -s2 I* shyt+(p, -p2))s, -S; I* sh6r+4)a, -a2 (P,P2sinpt 

Let k,(x) = dO,P, do > 0 and let a be any real number. After substituting lnx = 5, Eq. (13) becomes 

5 
T(tk”‘dr - Hevk5( 1 [r(d) - r,(e”)]e”ds) = 2Reaq 

G(r) = 
A, (f) -t, k=a-I, H=$ 
A(t) 0 

04) 

Differentiating both sides of Eq. (14) and applying an inverse Fourier transformation to the relation 
obtained, with the complex variable t = f. -i& as a parameter (E is as small a positive number as desired), 
we obtain 

G(t)Y(t)-/f’f’(t-ik)=F(t), ---i&<t<+00-i& (15) 

rY(t) = T(f) - To(t), F(f) = _ C(f)w) 
t 

Suppose k > 0. The problem considered is reduced to the following problem of the Karleman type 
for a strip: obtain the function Y(z), which is holomorphic in the strip -k - E < Imz c -E, vanishes at 
infinity, is continuously extendable on the strip boundary and satisfies condition (15). 

Using results obtained earlier [lo], the function Y(z) can be represented in the following form 

(16) 

X(z)=;Xk(z)x(z)sh;z, x(z) = klz’“l- exp(iz In HA”) 
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Suppose k 3 1. If the function To(z) is analytically extendable in the strip -1 < Imz < 1 and vanishes 
exponentially at infinity, it follows from condition (15) and Eq. (16) that the function 

Y,(z) = 
Y(z), -k-&<Imz<-& 

[F(z)+FM(z-ik)]/G(z), -c<Imz<k-a 

is holomorphic in the strip -k - E < Imz < k - E, vanishes exponentially at infinity, is bounded in the 
entire strip with the exception of the points zj+ 
function G(z) in the upper strip. 

= f,? + ir: (j = 0, 1. . .p), which are the zeroes of the 

Thus, according to Cauchy’s formula, the required contact stress can be represented in the following 
form 

r(x) - To(X) = k _ -2 7 W(t)ei”“% = $ 7 (r _ ik)Y(r _ ik)$‘-‘k)‘“*& 

Consequently, in the vicinity of the vertex of the angle (asx + 0) we will obtain Z(X) -Z&X) = ,?‘cp&), 
where cp&) is a bounded function near the point x = 0. For large x we get 

z(x)-z,(X)=u(l/X’+r ) 0’ 

If 0 < k -c 1, the function YcZj, g iven by Eq. (16) is analytically continuous in the strip -1 < Imz < 
1, apart from the points 07 = A; + ipy (j = 0, 1, I), which are the poles of the function G(,) in this strip. 
Then shear stress near the point x = 0 is represented as follows: 

X 
-1 

+-reS[ZY(Z)t?~z’n~ 
fi 

loo =Ao +;po = c,+j +I) + ‘p, (x)7 Cl = const 

where cp,(x) is a bounded function forx 2 0. 
We will now consider the case when k < 0 (a c l), i.e. the stiffness of the rod increases at the vertex 

of the angle and vanishes at infinity, and the entire principal vector of external load is transferred to 
the wedge. Putting m = -k, when can write condition (15) in the following form 

C(t)Yb(f)-HYo(f+im)=F(t), -m-iE<t<+oo-iE (17) 

Consider the following problem: it is required to find a function Yz(z) which is holomorphic in the 
strip -m -E < Imz < m - E, vanishes at infinity and is bounded in the entire strip, apart from the points 
Zj- = l,- + iTj_ (j = 0, 1,. . ,q) which are the zeroes of the function G(,) in the lower half-space. 

If the following problem is solved: find the function YO(z), which is holomorphic in the strip 
-E < Imz < m - E, vanishes at infinity and is continuously extendable at the strip boundary due to the 
boundary condition (17) then the solution of the previous problem will be the function 

Yb(Z), -E<ImZ<n-E 

y2(z)= [F(z)+HYo(z+im)]/G(z), --m-E<ImZ<-E 

Using the results obtained previously [lo], the function Ya can be represented in the form 

ye(z) = -&.&-j-” _ F(f) (sh+z))-‘df, 
. ,_,,x(r+im) m 

(18) 

&z)=$,(z)iL(z)sh$z. ji(z) = m-“‘“F 
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If ri < 1, then the function ‘I’&) is analytically extendable in the strip -1 c Imz < m - E and the 
shear stress z(x) - za(x) is bounded at the point x = 0. If r; > -1, then the function Y?(z) has the pole 
closest to the real axis at the point z 0 = to + ir& the function T(t) - T,(t) has a similar character and 
the unknown contact stress near the point x = 0 can be represented in the form 

T(X) -z&r) = c*x-(‘IO +I) + (p*(x) 

For large x we have 

r(x)--r&)=O(I/x’+m) 

If a = 1 (k = m = 0), condition (17) gives 

Y(Z) = F(z)I(G(z) - W 

and the shear stress has the form 

~(~)-~~(x)=O(x~-‘) as x+0, h=Imu 

where u is chosen from the zeros closest to the real axis of the functions A(z) and G(z) -H in the lower 
half-space. 

For a c 1, when 0 = n, i.e. the anisotropic body is a half-plane, the function 

G(t) = -(PI + P2 )z cth rrz 

has a single pure imaginary root z0 = -i/2 in the strip -1 < Imz c 0, and the shear stress near point 
x = 0 has the form 

T(X) - z,(x) = c*x -% + q-$(x) 

When 0 = 2n, i.e. the body occupies the entire plane, cut along the positive part of the real axis, then 

G(Z) = -(PI + P2 )z cth 2xz 

This function has pure imaginary roots z. = -i/4, z1 = -3i/4 in the strip -1 < Imz c 0, and the shear 
stress as x + 0 has the following form: 

z(x) -r,(x) = c3x -% + c,x-x + (p3(x) 

Here (P&X) and cps(x) are bounded functions for x 2 0 and c2, c3 and c4 are constants. 
For 1 < c1 < 2, when 8 = n, the function G,,, has a pole at the point o; = -i, the shear stress is 

bounded in the vicinity of the vertex of the angle. When 8 = 2n asx + 0 the shear stress has a singularity 
of the order of the square root. 

Similar results are obtained in the case of an isotropic body [4]. 
Now consider an orthotropic body. Then 

A,(t)=-@, +&)(p, -P2)2shyt+(P, +P2)2(b~ -i32)S”6t 

I= (p, -p2)2 char-(Pi +P2? ch61+4Pil&cosut 

It can be proved that, for 0 c 8 c 71, the equation A,(t) = 0 can have only an imaginary root in the 
strip -1 c Imz c 0, and the equation A(z) = 0 does not have any roots in this strip. Moreover, for 8 
c 7r/2 ((3, c 8, < 7r/2), the equation A,(z) = 0 does not have any roots in the strip -1 c Imz < 0. 

For a c 1, if 8 = 2rr/3, the function hi(z) has zeroes at the points z; = -i/3, z; = -2d3 and the stress 
at the point x = 0 has the estimate 

z(x) - r,(x) = c,x -% + c2x -x +$3(x) 

where G3(x) is a bounded function for x 2 0, and Cl and C2 are constants. 
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When 7112 < 0 c 7c, by choosing the numbers 6 and y or the numbers 8, and f32, we can achieve that 
the equation Al(z) = 0 has a root in the strip -1 6 Imz c 0. This means that the stress z(x) - Q(X) can 
be bounded as well unbounded at the point x = 0. 
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